Antinociceptive effects of the N-acylethanolamine acid amidase inhibitor ARN077 in rodent pain models.

نویسندگان

  • Oscar Sasso
  • Guillermo Moreno-Sanz
  • Cataldo Martucci
  • Natalia Realini
  • Mauro Dionisi
  • Luisa Mengatto
  • Andrea Duranti
  • Glauco Tarozzo
  • Giorgio Tarzia
  • Marco Mor
  • Rosalia Bertorelli
  • Angelo Reggiani
  • Daniele Piomelli
چکیده

Fatty acid ethanolamides (FAEs), which include palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), are endogenous agonists of peroxisome proliferator-activated receptor-α (PPAR-α) and important regulators of the inflammatory response. They are degraded in macrophages by the lysosomal cysteine amidase, N-acylethanolamine acid amidase (NAAA). Previous studies have shown that pharmacological inhibition of NAAA activity suppresses macrophage activation in vitro and causes marked anti-inflammatory effects in vivo, which is suggestive of a role for NAAA in the control of inflammation. It is still unknown, however, whether NAAA-mediated FAE deactivation might regulate pain signaling. The present study examined the effects of ARN077, a potent and selective NAAA inhibitor recently disclosed by our group, in rodent models of hyperalgesia and allodynia caused by inflammation or nerve damage. Topical administration of ARN077 attenuated, in a dose-dependent manner, heat hyperalgesia and mechanical allodynia elicited in mice by carrageenan injection or sciatic nerve ligation. The antinociceptive effects of ARN077 were prevented by the selective PPAR-α antagonist GW6471 and did not occur in PPAR-α-deficient mice. Furthermore, topical ARN077 reversed the allodynia caused by ultraviolet B radiation in rats, and this effect was blocked by pretreatment with GW6471. Sciatic nerve ligation or application of the proinflammatory phorbol ester 12-O-tetradecanoylphorbol 13-acetate decreased FAE levels in sciatic nerve and skin tissue, respectively. ARN077 reversed these biochemical effects. The results identify ARN077 as a potent inhibitor of intracellular NAAA activity, which is active in vivo by topical administration. The findings further suggest that NAAA regulates peripheral pain initiation by interrupting endogenous FAE signaling at PPAR-α.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β-Lactones Inhibit N-acylethanolamine Acid Amidase by S-Acylation of the Catalytic N-Terminal Cysteine.

The cysteine amidase N-acylethanolamine acid amidase (NAAA) is a member of the N-terminal nucleophile class of enzymes and a potential target for anti-inflammatory drugs. We investigated the mechanism of inhibition of human NAAA by substituted β-lactones. We characterized pharmacologically a representative member of this class, ARN077, and showed, using high-resolution liquid chromatography-tan...

متن کامل

Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors.

Fatty acid ethanolamides (FAEs) and endocannabinoids (ECs) have been shown to alleviate pain and inflammation, regulate motility and appetite, and produce anticancer, anxiolytic, and neuroprotective efficacies via cannabinoid receptor type 1 (CB1) or type 2 (CB2) or via peroxisome proliferator-activated receptor α (PPAR-α) stimulation. FAEs and ECs are synthesized by a series of endogenous enzy...

متن کامل

Potential analgesic effects of a novel N-acylethanolamine acid amidase inhibitor F96 through PPAR-α

Pharmacological blockade of N-acylethanolamine acid amidase (NAAA) activity is an available approach for inflammation and pain control through restoring the ability of endogenous PEA. But the recently reported NAAA inhibitors suffer from the chemical and biological unstable properties, which restrict functions of NAAA inhibition in vivo. It is still unrevealed whether systematic inhibition of N...

متن کامل

Advances in the discovery of N-acylethanolamine acid amidase inhibitors.

N-Acylethanolamine acid amidase (NAAA) is a cysteine amidase that hydrolyzes saturated or monounsaturated fatty acid ethanolamides, such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA has been shown to exert analgesic and anti-inflammatory effects by engaging peroxisome proliferator-activated receptor-α. Like other fatty acid ethanolamides, PEA is not stored in cells, but prod...

متن کامل

Fatty acid binding protein deletion suppresses inflammatory pain through endocannabinoid/N-acylethanolamine-dependent mechanisms

BACKGROUND Fatty acid binding proteins (FABPs) serve as intracellular carriers that deliver endocannabinoids and N-acylethanolamines to their catabolic enzymes. Inhibition of FABPs reduces endocannabinoid transport and catabolism in cells and FABP inhibitors produce antinociceptive and anti-inflammatory effects in mice. Potential analgesic effects in mice lacking FABPs, however, have not been t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pain

دوره 154 3  شماره 

صفحات  -

تاریخ انتشار 2013